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Abstract

We note that there are essentially two methods of solving the hydrostatic primitive
equations in general vertical coordinates: the quasi-Eulerian class of algorithms
are typically used in quasi-stationary coordinates (e.g. height, pressure, or terrain
following) coordinate systems; the quasi-Lagrangian class of algorithms are almost
exclusively used in layered models and is the preferred paradigm in modern isopycnal
models. These approaches are not easily juxtaposed. Thus, hybrid coordinate models
that choose one method over the other may not necessarily obtain the particular
qualities associated with the alternative method.

We discuss the nature of the differences between the Lagrangian and Eulerian
algorithms and suggest that each has its benefits. The arbitrary Lagrangian Eulerian
method (ALE) purports to address these differences but we find that it does not
treat the vertical and horizontal dimensions symmetrically as is done in classical
Eulerian models. This distinction is particularly evident with the non-hydrostatic
equations, since there is explicitly no symmetry breaking in these equations. It
appears that the Lagrangian algorithms can not be easily invoked in conjunction
with the pressure method that is often used in non-hydrostatic models. We suggest
that research is necessary to find a way to combine the two viewpoints if we are
to develop models that are suitable for simulating the wide range of spatial and
temporal scales that are important in the ocean.
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1 Introduction

Traditionally, ocean models have been written to integrate forward in the time
the equations of motion written in just one vertical coordinate at a time, most
commonly either height, potential density or some form of terrain-following
coordinate. Recently, several models have been developed in a general coordi-
nate framework and specifically to work with hybrid coordinates (for example,
Bleck (2002); Song (2003), and other references in Griffies et al. (2000b)). Hy-
brid coordinates aim to mimic different types of coordinates in different parts
of a model. For example, the expected optimum hybrid coordinate might be
similar to potential density in the ocean interior where the flow is nearly
adiabatic, then matching to some form of terrain-following coordinate in the
bottom boundary and matching either a height or pressure coordinate in the
surface mixed layer regions.

One concern about these new classes of models is whether they can produce
solutions of the same caliber as the earlier class of single coordinate models.
In each category of single coordinate model, much work has been invested in
developing techniques for rendering accurate and physically relevant solutions.
For example, height coordinate models no longer have a spurious representa-
tion of the topography (Adcroft et al., 1997) and isopycnal models can be
made truly adiabatic (Oberhuber, 1993). General coordinate models allow the
exploration of hybrid coordinates where optimal features of single coordinate
models are blended. It is not yet clear whether these optimal features are
compatible. The ultimate test will be to compare the new general coordinate
models side-by-side with each of the single coordinate models; this has not yet
been done.

In this note, we discuss some algorithmic considerations that arise when build-
ing a generalized or hybrid coordinate model. We are first concerned with use
of the continuity equation in isopycnal models (described, for example, by
Bleck, 2002) which has the advantage that it renders isopycnal coordinate
models truly adiabatic. The method treats the dynamics as Lagrangian in
the vertical, in contrast to the Eulerian algorithms used previously. This dis-
tinction was discussed by Bleck (1978). The general notion (with which we
agree entirely) is that an adiabatic formulation is preferable for climate scale
modeling. However, we also consider how to integrate forward non-hydrostatic
equations in general coordinates, appropriate for small scale processes. We find
that the Boussinesq non-hydrostatic equations and a Lagrangian treatment of
the vertical direction are mutually exclusive. We conclude with more questions
than answers and hope that this note will stimulate some research into these
issues.
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2 Hydrostatic equations in general vertical coordinates

The traditional equations of motion for the ocean (in which the hydrostatic
and Boussinesq approximations are made) can be written in terms of a gen-
eral vertical coordinate r = r(x, y, z, t). We restrict our discussion here to the
Boussinesq equations for the purpose of comparison with the non-hydrostatic
equations discussed later. We recognize that we could as easily use the hydro-
static non-Boussinesq equations here. The hydrostatic model equations are:

Dt~vh + f k̂ ∧ ~vh +
1

ρo

∇rp +
ρ

ρo

∇r(gz)= ~Fh (1)

∂rp + ρ∂r(gz)= 0 (2)

∂tzr + ∇r · (zr~vh) + ∂r(zrṙ)= 0 (3)

∂t(zrθ) + ∇r · (zrθ~vh) + ∂r(zrθṙ)= Qθ (4)

∂t(zrs) + ∇r · (zrs~vh) + ∂r(zrsṙ)= Qs (5)

ρ = ρ(θ, s, p) (6)

∂tη + ∇ ·

∫

~vhzr dr = P (7)

where ~vh is the horizontal component of the flow vector, f is the Coriolis
parameter, ρo is a reference density, ρ is in-situ density, g is the constant of
gravitational acceleration, z is height referenced to the geoid, ~Fh is an arbitrary
horizontal force resulting from the divergence of internal and external stresses
on the fluid, p is the thermodynamic pressure, ṙ is the vertical flow rate across
an r surface and θ is potential temperature, s is the salinity, η is the free-
surface height displacement and Qθ, Qs and P are general sources and sinks
of heat, salt and fresh water, respectively. In all the equations in this note,
∇r = (∂x, ∂y, 0) is the gradient operator along r surfaces. The integral in the
free surface equation (7) is over the full depth of the fluid and consequently is
independent of the choice of coordinate system.

The factor, zr ≡ ∂rz, is referred to as the “thickness” and is the scale factor
describing the vertical coordinate mapping from height. zr is the principle dis-
criminator between different coordinate systems (choices of r). If we choose
r = z then zr = 1 and we recover the conventional height coordinates equa-
tions. If we choose r = σ = (z − η)/(H + η), where z = −H is the location of
the solid bottom, then zr = H + η and we recover the usual terrain-following
coordinate equations. If we choose r = ρ then zr = ∂ρz and with some small
manipulation 2 we can obtain the continuous isopycnal coordinate equations.

2 Isopycnal models are usually formulated using the Montgomery potential, M =
p/ρo + ρgz/ρo, so that in the horizontal momentum equations 1

ρo
∇ρp+ ρ

ρo
∇ρ(gz) =

∇ρM and the hydrostatic balance equation becomes ∂ρM = gz/ρo.
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The hydrostatic approximation (2) allows the pressure, p, to be found by
vertical integration given an appropriate pressure boundary condition at the
sea-surface (p = pa at z = η):

p = pa + g

rη
∫

r

ρzr dr′

where rη = r(z = η) denotes the coordinate of the free-surface. Vertical in-
tegration for the pressure is carried out in both classes of model discussed
next.

2.1 The EVD algorithm: quasi-Eulerian treatment of the vertical direction

In the height coordinate equations, the continuity equation is unambiguously
a strong constraint on the flow field and is thus used to diagnose the vertical
component of velocity in such a way so as to be exactly non-divergent. The
continuity equation is used in essentially the same manner in the more general
class of terrain-following coordinate models. Although the continuity equation
(3) appears to be prognostic in “thickness”, the rate of change of thickness
is dictated by the free-surface evolution (7) due to the prescribed functional
relationship between the coordinate r and η. Thus, in equation 3, the time
tendency term is known and the equation may be integrated vertically to
diagnose ṙ:

zrṙ = zr ṙ−H −

r
∫

r
−H

(∂tzr + ∇r · zr~vh)dr′ (8)

where r−H = r(z = −H) denotes the coordinate of the ocean floor and ṙ = ṙ−H

denotes the no normal flow boundary condition. Due to the close algorithmic
connection between the height and terrain-following coordinate models we
refer to this diagnostic use of the continuity equations as the quasi-Eulerian
treatment of the vertical direction, or EVD method for short.

In the continuous equations, the free-surface equation (7) is derived by verti-
cally integrating the continuity equation (3) from top to bottom and is con-
sistent with applying equation 8 at the free-surface along with appropriate
boundary conditions. In the discrete equations, conservation properties typ-
ically depend on the relationship between the free-surface equation and the
three dimensional continuity equation. However, it simply suffices to ensure
that the vertical sum of the time tendencies and horizontal volume fluxes are
independently equal to the corresponding terms in the free-surface equation.
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We should emphasize that the EVD algorithm refers specifically to the “Eu-
lerian” treatment of the vertical terms in the continuity equation. The hori-
zontal terms could be treated with a Lagrangian or semi-Lagrangian method.
Moreover, the vertical advection terms in the thermodynamic and momentum
equations could be treated with a Lagrangian method. However, it is typically
hard to retain conservation properties of tracers if the tracer equations are
treated differently to the continuity equation.

If we choose to use isopycnal coordinates, r = ρ, the algorithm above would
appear to work well. However, the procedure of integration differs from the
LVD algorithm (described next) used by modern isopycnal models: in the EVD
algorithm, we predict the heat and salt (4,5), and then diagnose the density.
From the density we can diagnose the rate of change of thickness and then
diagnose from continuity (3) the cross-coordinate flow, ṙ. Using this procedure,
it is very hard to guarantee that the cross-coordinate flow, ṙ, is identically zero
(adiabatic) in the absence of diabatic forcing.

2.2 The LVD algorithm: quasi-Lagrangian treatment of the vertical direction

In contrast to the EVD algorithm, if we treat the vertical coordinate as La-
grangian, as is the case in modern isopycnal models, then it is more natural
to use the continuity equation prognostically:

∂tzr = −∇r · (zr~vh) − ∂r(zrR) (9)

where ṙ = R is prescribed. This is especially evident if we consider the adi-
abatic limit where the cross-coordinate flow vanishes (ṙ = R = 0). In this
case, integrating equations 1–3 over layers yields the stacked shallow water
equations which represent the archetypal isopycnal model. This conveniently
eliminates the need to calculate any vertical fluxes due to advection (there are
none) so that all (unforced) prognostic equations appear as strictly horizontal
(i.e. terms involving ṙ in equations 3, 4 and 5 vanish). Further, all advective
truncation errors are confined to the horizontal coordinate planes and may be
entirely masked by epineutral stirring and mixing, to the extent that the co-
ordinate surfaces coincide with neutral surfaces (Bleck, 1998). In this system
there is a clear separation of dynamics and thermodynamics; the dynamical
modes (internal waves and Rossby mode) are governed by equations 1–3 alone.
There is no vertical advective signature of linear internal waves; the time ten-
dency of thickness plays that role. Propagation is due to horizontal dynamics
and hydrostatic pressure alone.

We will refer to the prognostic use of the continuity equation (9) as the quasi-
Lagrangian treatment of vertical dynamics or LVD for short. It specifically
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refers to the specification of cross-coordinate flow, ṙ = R, and prognosti-
cated evolution of thickness, zr. The LVD algorithm is at the heart of modern
isopycnal models and some hybrid coordinate models. These models use the
“arbitrary Lagrangian Eulerian” method (or ALE for short) which facilitates
non-adiabatic motions - i.e. it allows cross-coordinate flow in an otherwise La-
grangian vertical coordinate system. In the ALE method, the approach is to
first integrate the equations forward in a truly Lagrangian phase assuming no
cross-coordinate flow and then in a second phase to re-map quantities in the
vertical. The re-mapping phase plays the role of cross-coordinate fluxes and
can be formulated to re-map to any arbitrary coordinate. In this regard the
ALE method is completely general. This use of two distinct phases is generally
known as operator splitting. Although the re-mapping phase can account for
cross-coordinate flow and render the system as if it were in fixed coordinates
(Eulerian), it does not not change the algorithmic nature of ALE which is
Lagrangian. The ALE method belongs to the class of LVD algorithms because
the continuity equation is not used diagnostically. This becomes clear when we
later consider how to solve the non-hydrostatic equations in which the three
space dimensions are treated symmetrically.

We have ignored many details that are necessary to successfully integrate
the isopycnal equations. For instance, a problematic issue is that zr must
be positive definite; using the LVD algorithm, a positive definite advection
method is required for thickness. Also, one of the thermodynamic equations
is redundant and care must be taken in eliminating this equation consistently
with a non-linear equation of state. Here, we assume that such issues are
resolvable and not pertinent to this discussion.

2.3 The conundrum

We summarize the essential differences between two basic methods of solution
for the hydrostatic primitive equations (also noted by Bleck, 1978) as follows.

The quasi-Eulerian treatment of the vertical direction (EVD), which encapsu-
lates the algorithms used in height and terrain-following coordinate models,
has the following features:
• The continuity equation is used in the form of equation 8 to diagnose the

cross-coordinate flow rate, ṙ,
• the free-surface equation is integrated forward in addition to the three

dimensional equations,
• the thickness, zr, and its time derivative, ∂tzr, are functionally related to

other variables.
The Lagrangian treatment of the vertical direction (LVD), as used in modern
isopycnal models that in principle can be exactly adiabatic, has the following
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features:
• The continuity equation is used in the form of equation 9 to predict the

thickness zr,
• the cross coordinate flow, ṙ = R, is specified when used in the continuity

equation,
• the free-surface equation is redundant.

It should be self evident that these two algorithms are mutually exclusive; one
cannot both supply and diagnose a quantity in an equation.

It has been recognized that spurious diabatic fluxes are a major problem for
ocean climate models and these spurious fluxes are particularly large for the
height and terrain-following coordinate models (Griffies et al., 2000a). Isopyc-
nal models do not suffer from this problem and can potentially represent truly
adiabatic flows.

It is simplest to use the LVD algorithm to solve the isopycnal equations and
simplest to use the EVD algorithm when the coordinate is not related to
thermodynamic quantities.

The ultimate goal of hybrid coordinate models is to do as well as single co-
ordinate models in particular regions of the ocean. Hybrid coordinate models
currently use either the EVD or LVD algorithm. It is not clear whether a
hybrid coordinate model using the EVD algorithm can represent adiabatic
flows as accurately as a model using the LVD algorithm - this is an open
question that needs addressing. On the other hand, it is possible to use LVD
algorithm for a non-Lagrangian coordinate by means of the ALE method (the
re-mapping phase accommodates the cross-coordinate flow). To this end, the
ALE method would appear to be the best method to achieve optimal fidelity
for all coordinate systems.

3 Incompressible non-hydrostatic equations in general coordinates

One aspect of the LVD algorithm is that it explicitly breaks the symmetry
between horizontal and vertical direction. This may be justified since in a
hydrostatic model the statement of hydrostatic balance breaks the symmetry.
However, models such as the MIT general circulation model (Marshall et al.,
1997a) have an optional capability to solve the non-hydrostatic equations. A
desire to implement general and hybrid coordinates in such a model forces us
to consider whether the LVD algorithm can be used for the incompressible
non-hydrostatic equations; the current methodology (known as the projection
method) used to solve the non-hydrostatic equations falls into the class of
EVD algorithms and treats all three space dimensions symmetrically.
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The Boussinesq equations are filtered equations and do not exhibit acoustic
modes. They differ 3 from equations 1–7 by relaxing the hydrostatic approxi-
mation (2) which is replaced with the vertical momentum equation

Dtw + (2~Ω ∧ ~v).k̂ +
1

ρo

z−1
r ∂rp +

ρ

ρo

z−1
r ∂r(gz) = Fw (10)

where w = Dtz is the vertical component of velocity in height coordinates. We
use the Eulerian vertical flow, w and not ṙ to keep the the vertical momentum
equation simple. Note that the horizontal pressure gradient term (in equation
1) now takes the form 1

ρo
(∇rp − z−1

r ∂rp∇rz). To close the equations we need
to relate w and ṙ. We do this by assuming a limited functional form of r =
r(z, η, H, ρ). Thus, we can write

ṙ = rzw + rηDtη + rHDtH + rρDtρ (11)

where

rz ≡
∂r

∂z

∣

∣

∣

∣

∣

η,H,ρ

, rη ≡
∂r

∂η

∣

∣

∣

∣

∣

z,H,ρ

, rH ≡
∂r

∂H

∣

∣

∣

∣

∣

z,η,ρ

and rρ ≡
∂r

∂ρ

∣

∣

∣

∣

∣

z,η,H

.

Note that rz should not be confused with the reciprocal of zr; the first is a
functional derivative holding arguments constant while the second is a spatial
derivative hold horizontal coordinate and time constant.

Equations 1, 10, 3–7 and 11 can be solved using the projection method, also
known as the pressure method, which is the canonical method for solving
incompressible equations (Chorin, 1968; Durran, 1998). Alternative methods,
for example a semi-implicit treatment of sound waves, essentially take a similar
form. The projection method, as we describe it, assumes an explicit in time
treatment of all terms except the pressure gradient (although the method can
be generalized).

We summarize the time-discretized momentum and continuity equations with

~v
(n+1)
h − ~v

(n)
h

∆t
+

1

ρo

(

∇rp − z−1
r (∇rz)∂rp

)

= ~G
(n)
h (12)

w(n+1)
− w(n)

∆t
+

1

ρo

z−1
r ∂rp =G(n)

w (13)

∇r(·zr~v
(n+1)
h ) + ∂r(zrṙ

(n+1)) =−∂tzr (14)

3 To be consistent, the approximated Coriolis terms in equation 1 must be replaced
with the full Coriolis terms, namely the horizontal components of 2~Ω ∧ ~v.
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where the G’s incorporate all the terms that are explicit in time. For conve-
nience, it is useful to define the intermediate quantities

~v∗ =~v(n) + ∆t ~G
(n)
h

w∗ =w(n) + ∆tG(n)
w

ż∗r = ∂tzr + ∇r(·zr~v
∗

h) + ∂r(zrrzw
∗)

which simplifies the time-stepping equations to

~v(n+1) =~v∗
−

∆t

ρo

(

∇rp − z−1
r (∇rz)∂rp

)

w(n+1) = w∗
−

∆t

ρo

z−1
r ∂rp.

Invoking the functional relationship (11) between w and ṙ we obtain

ṙ(n+1) = rzw
∗
− rz

∆t

ρo

z−1
r ∂rp + rηDtη

(n+1) + rHDtH
(n+1) + rρDtρ

(n+1)

Substituting into the continuity equation applied to the future time step (equa-
tion 14) we obtain a Poisson problem to solve for p:

∇r · (zr∇rp) −∇r · (∂rp∇rz) + ∂r(rz∂rp) (15)

=
ρo

∆t

[

żr
∗ + ∂r

(

zr(rηDtη
(n+1) + rHDtH

(n+1) + rρDtρ
(n+1))

)]

The appearance of the time-derivatives of η and ρ on the right hand side will
be troublesome for conservation properties but in principle does not stop us
from using the method to integrate the equations forward. Broadly speaking,
the pressure equation (15) is an elliptic equation that, in a discrete form and
given appropriate boundary conditions, can be solved by various linear algebra
methods.

Common sense suggests that pure isopycnal coordinates should not be used for
non-hydrostatic modelling because of monotonicity requirements for vertical
coordinates and the exclusion of resolution in unstratified regions. This is,
of course, pointless since non-hydrostatic effects tend to be associated with
over-turning (e.g. Kelvin Helmholtz instabilities). Similarly, terrain-following
coordinates can be used for non-hydrostatic modelling but the presence of
the cross-terms in the elliptic pressure equation greatly affects the ease with
which the equation can be solved. The larger the terms become the harder it
is for algebraic solvers to find solutions efficiently. This suggests that a useful
strategy for choosing a vertical coordinate for non-hydrostatic modelling is to
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minimize these cross-terms. Consequently, the most natural choice of vertical
coordinate is height (where the terms vanish) or something closely related
to height, such as the z∗ coordinate (Adcroft and Campin, 2003). The latter
choice is still more complicated than height due to the time-dependent source
terms in the pressure equation (15).

By construction, the projection method excludes the use of the LVD algorithm
of section 2.2; the LVD algorithm prescribes ṙ in the continuity equation and
in the projection method this same term should be substituted from the verti-
cal momentum equation. We therefore conclude that non-hydrostatic models
using the projection method must use the EVD algorithm (section 2.1).

4 Discussion

We have considered the general methods for solving the equations of motion
in primitive equation form (i.e. prognostic in velocity) in both the hydrostatic
and non-hydrostatic limits. We found that the two basic approaches to hydro-
static modelling appear to be exclusive; it is hard to formulate an algorithm
that can encompass both approaches. This is of relevance because the isopy-
cnal modelling community has learned that the Lagrangian approach is best
suited for modelling adiabatic motions; the EVD algorithm is not sufficiently
adiabatic for some important oceanographic applications, even applied in isen-
tropic coordinates (Griffies et al., 2000a). Given the highly adiabatic nature of
the interior ocean, the argument is that hydrostatic hybrid coordinate ocean
models should use the LVD algorithm to avoid spurious diabatic effects.

In order to construct versatile models that can work efficiently at both the
large scales where the flow is hydrostatic and at very small scales in the non-
hydrostatic limit (e.g. coastal scale and process studies), we would need to
keep the algorithm considerations we have discussed in mind when choosing
vertical coordinates and designing algorithms. We argue that it is hard to envi-
sion non-hydrostatic modelling in a vertical coordinate that significantly differs
from height. Moreover, the projection method used in current non-hydrostatic
models of the ocean (Marshall et al., 1997b) excludes the possibility of using
the LVD algorithm. Thus, while we might prefer the LVD algorithm for philo-
sophical reasons, future models designed to model a wide range of scales and
processes may be forced to use the EVD method.

The differences in solutions invoked by using either the EVD of LVD algorithm
in hybrid coordinate models could in principle be evaluated by comparing two
such models with the same hybrid coordinate. However, other implementation
details (such as the choice of pressure gradient method) are likely to be in-
fluenced by the choice of over-arching algorithm and may mask the essential
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differences. Nevertheless, a comparison may address the question of whether
differences due to choice of algorithm are significant at all.

We have considered the non-hydrostatic equations in order to emphasize the
difference between the EVD and LVD algorithms. The essential difference is
that the EVD algorithm treats all spatial dimensions equally while the LVD
algorithm treats the vertical dimension very differently from the horizontal.

The elliptic pressure equation appears in the incompressible non-hydrostatic
equations because the acoustic modes have been filtered out of the system.
In the unapproximated Navier-Stokes equations the role of the diagnostic el-
liptic equation for pressure is played by a prognostic equation for pressure;
the system is hyperbolic. Here, there appears to be no inherent problems to
solving the equations explicitly in general coordinates using either the EVD
and LVD algorithm. We speculate that relaxing the incompressible approxi-
mation may allow general coordinate non-hydrostatic modelling in the future.
This approach is more readily available for use in the atmosphere than in the
ocean: the Mach number (U/cs) is less than one but still of first order while
in the ocean the Mach number is of order 10−2.

As computational resources and capabilities increase with time, the resolution
of ocean models will be driven ever higher to a point where even global models
achieve the resolutions normally associated with regional and process models.
At some point, as is happening in meteorology, non-hydrostatic models will
become the norm rather than the exception. The current direction that we
are heading with the particular algorithms used in hybrid coordinate models
may be at odds with this long-term goal. We suggest that a worth-while goal
would be to find a non-hydrostatic algorithm that can recover adiabatic prop-
erties in the hydrostatic limit. This may require the adiabatic constraint to
be enforced in the EVD algorithm or alternatively a non-symmetry breaking
form of LVD algorithm be found. We hope that this discussion may stimulate
research toward these goals.
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